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Abstract
Objective There is a lack of reliable tools used to predict functional recovery in unresponsive patients following a severe 
brain injury. The objective of the study is to evaluate the prognostic utility of resting-state functional magnetic resonance 
imaging for predicting good neurologic recovery in unresponsive patients with severe brain injury in the intensive-care unit.
Methods Each patient underwent a 5.5-min resting-state scan and ten resting-state networks were extracted via independent 
component analysis. The Glasgow Outcome Scale was used to classify patients into good and poor outcome groups. The 
Nearest Centroid classifier used each patient’s ten resting-state network values to predict best neurologic outcome within 
6 months post-injury.
Results Of the 25 patients enrolled (mean age = 43.68, range = [19–69]; GCS ≤ 9; 6 females), 10 had good and 15 had poor 
outcome. The classifier correctly and confidently predicted 8/10 patients with good and 12/15 patients with poor outcome 
(mean = 0.793, CI = [0.700, 0.886], Z = 2.843, p = 0.002). The prediction performance was largely determined by three 
visual (medial: Z = 3.11, p = 0.002; occipital pole: Z = 2.44, p = 0.015; lateral: Z = 2.85, p = 0.004) and the left frontoparietal 
network (Z = 2.179, p = 0.029).
Discussion Our approach correctly identified good functional outcome with higher sensitivity (80%) than traditional prog-
nostic measures. By revealing preserved networks in the absence of discernible behavioral signs, functional connectivity 
may aid in the prognostic process and affect the outcome of discussions surrounding withdrawal of life-sustaining measures.
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Introduction

Predicting meaningful functional recovery after an acute 
severe brain injury is a substantial clinical challenge in the 
intensive-care unit [1, 2]. Measuring the spontaneous fluc-
tuations of the blood oxygen level-dependent signal using 
resting-state functional magnetic resonance imaging (rs-
fMRI) may improve prognostication for this patient popula-
tion. Indeed, assessing functional connectivity across well-
established resting-state networks may provide objective 
and quantifiable markers of neurologic damage and inform 
patient outcomes. To date, task-based fMRI has proved 
effective for assessing preserved cognitive function in this 
patient group [3, 4]; however, rs-fMRI has advantages due 
to its ease of administration and requires no effort by the 
patient. In fact, there is a growing body of evidence suggest-
ing that the preservation of functional networks—primarily 
the default mode—in acute disorders of consciousness may 
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be necessary to support neurologic recovery due to its pro-
posed role in sustaining consciousness [5–9].

Differences in network connectivity have been estab-
lished between survivors and non-survivors of acute severe 
brain injury [6, 10]. However, whether the preservation of 
functional networks can be used to provide individualized 
assessments for good neurologic recovery remains to be 
fully elucidated. Machine-learning approaches are useful in 
this regard, as they can objectively determine the relation-
ship between network connectivity and patient prognosis, 
while providing information about the quality and strength 
of that association [11–13]. Given that 70% of deaths in the 
ICU following a severe brain injury are from the withdrawal 
of life-sustaining measures, it is imperative to develop accu-
rate tools to identify patients that have the potential for good 
neurological recovery to better allocate healthcare resources 
and avoid premature withdrawal of care [14].

The overarching goal of this study was to determine if 
functional connectivity measures could predict neurologic 
outcomes in a heterogeneous cohort of unresponsive criti-
cally ill patients. Specifically, a machine-learning classifica-
tion approach was used to determine if rs-fMRI measures 
across ten well-established networks could accurately deter-
mine if a patient would achieve a meaningful neurological 
recovery or a poor functional outcome within 6 months of 
their brain injury (GOS 4–5 and GOS 1–3, respectively). We 
hypothesized that the analysis of rs-fMRI using machine-
learning methods would successfully identify patients with 
good outcome and that this identification would be depend-
ent on the detection of preserved functional networks.

Methods

Standard protocol approvals

This study received ethical approval from the Health Sci-
ences Research Ethics Board at Western University in com-
pliance with the Tri-Council Policy Statement (TCPS): 
Ethical Conduct for Research Involving Human guidelines. 
Written informed consent was obtained from the substitute 
decision-maker for each patient before study procedures 
commenced.

Patients

 Data was acquired from 27 patients in this cohort study 
from two ICUs at the London Health Sciences Centre (Lon-
don, Canada). Patients were enrolled between 2014 and 2017 
and January–August 2022. Two patients were discarded due 
to excessive motion. Demographic and clinical characteris-
tics are outlined in Table 1. Inclusion criteria for this study 
were: (1) admission to the ICU and unresponsive after a 

severe brain injury of any aetiology, (2) a minimum age 
of 18 and maximum age of 80, (3) cardiovascular stabil-
ity, (4) no prior history of neurological impairment, (5) no 
contraindication for MRI, (6) a low level of consciousness 
as the primary reason for the inability to command follow 
at enrollment and at the time of scan, and (7) sedation was 
not the primary cause of the low level of consciousness. 
Patients were ineligible for the study if they were (1) hypo-
thermic and (2) had an unstable cardiac or respiratory status 
that posed an immediate risk for deterioration and (3) too 
unstable for MRI due to raised intracranial pressure and an 
inability to lie flat in the scanner.

Acquisition

A 1.5 T General Electric MRI system was used to acquire 
structural and functional data. A high-resolution whole brain 
3-D T1-weighted axial SGPR pulse sequence was obtained 
over 4 min. An rs-fMRI scan was acquired with a T2*-
weighted acquisition sequence (TR = 2500 ms, TE = 40 ms, 
matrix size = 64 × 64, slice thickness = 3 mm, in-plane reso-
lution = 3.75 mm × 3.75 mm, and flip angle 90°). The 134 
volumes were obtained over 5.58 min. Each volume con-
sisted of 30 oblique interleaved slices. The first two volumes 
of each patient’s scan were discarded to allow for the stabi-
lization of the magnetic field.

Preprocessing

Statistical Parametric Mapping (SPM 8, http:// www. fil. ion. 
ucl. ac. uk/ spm) was used for image pre-processing. Func-
tional images for each participant were AC-PC orientated, 
spatially realigned for motion correction, co-registered to the 
T1 structural images, segmented and normalized to the SPM 
echo-planar imaging template, and spatially smoothed using 
an 8 mm FWHM Gaussian kernel. Movement parameters 
were included as covariates. Of the 25 patients included for 
analysis, motion and rotation parameters did not surpass an 
average of 2 mm or 2°.

Resting‑state analysis

An independent component analysis (ICA) was used to 
decompose the fMRI data into statistically independent 
spatial and temporal components using the GIFT software 
package (http:// icatb. sourc eforge. net). The number of esti-
mated components ranged from 11 to 88. The component 
results were scaled to Z-scores. Next, the components gen-
erated for each patient were spatially correlated to ten well-
established and widely used resting-state network templates 
derived from a database of ~ 30,000 controls [15]. The ten 
templates were representative of the following networks: 
medial visual, occipital pole visual, lateral visual, default 

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://icatb.sourceforge.net
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mode, cerebellar, sensorimotor, auditory, executive control, 
and right and left frontoparietal. The component with the 
highest mean spatial correlation to each of the ten templates 
of interest was extracted as the resting-state network for that 
patient. These components were visually inspected to ensure 
that they accurately reflected the desired network. These 
component correlation values were subsequently used in the 
machine-learning analysis to predict functional outcomes.

Outcome measures

A patient’s clinical outcome was determined by their best 
Glasgow Outcome Scale (GOS) score within 6 months 
following their injury [3, 16]. A GOS between 4 and 5 
was classified as good outcome, whereas a GOS of 1–3 
was scored as poor outcome. During pre-processing and 

ICA analysis, investigators were unaware of patient out-
comes and medical staff completing behavioral assess-
ments were unaware of imaging results.

Outcome prediction

All machine learning was conducted on Python (Version 
3.8.12) using sci-kit learning packages [17]. The Nearest 
Centroid classifier was used to compute the mean value (cen-
troid) of training examples for both labels (good and bad out-
comes) across each dimension (ten resting-state networks) in 
the data. Then, on the test set, the Euclidean distance between 
each centroid and patient data is computed, where test exam-
ples with a smaller distance to the centroid are assigned the 
corresponding label. Prediction accuracy was measured using 
balanced accuracy, which is measured as

Table 1  Patient demographic and clinical information

Study ID Age Sex Etiology Time of 
scan post-
ictus

GCS at scan (E,M,V) Sedation GOS

01 25 M Traumatic brain injury 11 days 4 (2,1,1T) None 4
02 40 M Traumatic brain injury 9 days 5 (1, 3,1T) None 4
03 67 F Hepatic failure 9 days 8 (3,4,1T) Hydromorphone 0.5 mg/h infusion 4
04 66 M Intracerebral hemorrhage with bi-hem-

ispheric infarcts involving frontal and 
temporal lobe

23 days 5 (1,3,1T) None 2

05 28 M Status epilepticus 3 months 6 (4,1,1T) Midazolam 0.5 mg/h infusion 3
06 42 M Stroke with bilateral deep white matter 

watershed infarcts
22 days 9 (4,4,1T) None 2

07 32 M Status epilepticus 5 months 6 (4,1,1T) None 2
08 19 M Traumatic brain injury 10 days 4 (1,2,1T) None 4
09 59 F Brain abscess 13 days 9 (4,4,1T) None 3
10 30 M Intracerebral hemorrhage involving left 

occipital lobe
8 days 7 (2,4,1T) Fentanyl 50 μg/h infusion 2

11 20 M Traumatic brain injury + cardiac arrest 21 months 8 (4,3,1T) None 2
12 30 M Infection (secondary to brainstem tumor) 3 days 6 (4,1,1T) None 3
13 36 M Hepatic failure 6 days 6 (1,4,1T) Fentanyl 25 mg bolus 1
14 67 F Herpes simplex virus encephalitis 22 days 6 (1,4,1T) None 4
15 38 F Intraventricular hemorrhage with deep 

white matter infarcts
32 days 7 (2,4,1T) None 3

16 55 M Cardiac arrest 4 days 3 (1,1,1T) Propofol 3 mg/kg/h infusion 5
17 34 M Traumatic brain injury 26 days 8 (4,3,1T) None 4
18 33 M Traumatic brain injury 17 days 9 (4,4,1T) None 4
19 34 M Cardiac arrest 7 days 3 (1,1,1T) Propofol 3 mg/kg/h infusion 2
20 41 M Traumatic brain injury with bilateral 

subdural hematoma/subarachnoid 
hemorrhage

2 days 3 (1,1,1T) Propofol 3 mg/kg/h infusion 3

21 68 M Stroke with infarct in the pons 22 days 4 (1,2,1T) None 2
22 61 M Cardiac arrest 6 days 6 (1,4,1T) None 1
23 56 M Stroke with left-side cerebellar infarcts 5 days 5 (1,3,1T) None 1
24 69 F Cardiac arrest 4 days 3 (1,1,1T) Propofol 3 mg/kg/h infusion 4
25 41 F Stroke (bilateral cerebellar infarct) 2 days 3 (1,1,1T) Propofol 3 mg/kg/h infusion 3
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where sensitivity was measured as correct and confident pre-
dictions of good outcome and specificity as correct and con-
fident predictions of poor outcome (see “Statistical evalua-
tion of prediction performance” for quantifying correct and 
confident predictions). Predictions that were inaccurate or 
not confident were labeled as incorrect (the opposing label).

Machine‑learning procedure

The performance of the Nearest Centroid classifier was 
estimated using repeated (N = 1000 iterations) stratified 
threefold cross-validation. On every iteration, the data 
were randomly split into three partitions in which the ratio 
of patients with good and poor outcomes were equal. For 
each of the three folds, the classifier was trained on two of 
the partitions (16–17 patients) and tested on the remaining 
(6–7 patients)—yielding three balanced accuracy scores 
(one for each fold). A large number of iterations were used 
to compute the distribution of balanced accuracy scores, 
so it could be trained on different subsets of patients. 
Group-level accuracy was measured as the average bal-
anced accuracy score on the test partitions across all folds 
and iterations. Confidence in an individual’s predicted out-
come was defined as the proportion of the 1000 iterations 
in which the classifier predicted a certain outcome. For 
example, a patient who was predicted to have a good out-
come on 800/1000 iterations would be classified as good 
outcome with 80% confidence.

Influential resting‑state networks

The networks that were significant predictors of functional 
outcome were determined by evaluating the centroids (mean 
of each of the ten resting-state networks) with the largest 
difference between good and poor outcome groups. The 
true difference in the centroid value between the good and 
poor outcome groups was statistically evaluated by com-
paring it to differences in the centroid values computed via 

sensitivity + specificity

2
,

Statistical evaluation of prediction performance

Permutation testing was used to evaluate the significance 
of group-level accuracy, individual patient’s confidence 
score, and resting-state network predictors. This method is 
a nonparametric approach to statistical testing that allows the 
generation of a null distribution based on permutations of 
the existing data. In this case, the identical machine-learning 
approach (as detailed in “Machine-learning procedure”) was 
used, except that the patients’ true outcomes were shuffled 
on each iteration. This approach was applied for 1000 itera-
tions which generated distributions of group-level balanced 
scores and individual-level predictions which can arise from 
random permutations of the data. Comparing the individ-
ual- and group-level accuracy scores to their respective null 
distribution captures spurious associations between resting-
state networks and functional outcome as well as controlling 
for unequal group sizes [18, 19].

For the group-level balanced accuracy scores to be 
significant, the mean balanced accuracy score across all 
non-permuted iterations had to fall outside 95% of the 
null distribution. For the individual prediction, if the pro-
portion of correct classifications for a patient was larger 
than 97.5% of the null distribution, then the patient was 
correctly (and confidently) classified. However, if the 
proportion of correct classification was less than 2.5% 
of the null distribution, then the patient was incorrectly 
(and confidently) classified. If the proportion fell within 
the null distribution, no relationship between resting-state 
networks and outcome could be reliably drawn for that 
patient, resulting in an incorrect prediction regardless of 
the actual outcome the classifier.

Permutation testing was also used to determine resting-
state networks that were statistically significant predictors of 
neurologic recovery. Null distribution of differences between 
centroids (good and poor outcome) for each resting-state 
network was computed on the data with shuffled outcome 
labels. A Z-score was computed between the true difference 
in centroid value between good and poor outcome and the 
null distribution of difference scores calculated via permuta-
tion testing. Formally, this is calculated as

where each value in the equation is a matrix with dimen-
sion iterations × centroids × resting-state networks,  where 
� denotes average over the first dimension and � denotes 
taking the standard deviation over the first dimension. There-
fore, Z is a vector of Z-scores indicating the importance of 

Z =
�(CentroidGood − CentroidPoor) − �(Null CentroidGood − Null CentroidPoor)

�(Null CentroidGood − Null CentroidPoor)
,

permutation testing (see “Statistical evaluation of prediction 
performance”).
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each network for predicting functional outcome. See Sup-
plementary Fig. 1 for additional details.

Results

Patient information

105 patients with brain injury were screened, 69 were 
eligible, and 57 were enrolled. 30 patients were enrolled 
but did not complete the study procedures. Supplemen-
tary Fig. 5 outlines the reasons patients were excluded, 
not enrolled, and enrolled but not tested. Twenty-seven 
patients completed the scan, but two were removed 
due to excessive motion artifacts. Thus, 25 patients 
were included in the analysis and presented with the 
following demographic factors (mean age = 43.68, 
range = [19–69]; 6 females). Patient etiology consisted 
of traumatic brain injury (28%), stroke (28%), cardiac 
arrest (16%), infection (12%), hepatic failure (8%), and 
status epilepticus (8%). The timing of the scan var-
ied due to the inclusion of three chronic critically ill 
patients (median = 10.00, range = [2–360 days]). The 
Glasgow Coma Scale (GCS) score was obtained imme-
diately prior to scanning (M = 5.68, CI = [4.87, 6.49], 
range = [3–9]). 64% of patients were not sedated during 
the scan (n = 16) and the type of sedative varied for the 
remaining participants. For complete patient informa-
tion, please refer to Table 1.

Outcome groups’ information

No statistical differences in demographic or clinical infor-
mation were observed between the good outcome (n = 10) 
or poor outcome (n = 15) groups, with respect to age 
(good outcome: M = 45.00 CI = [37.67, 52.33]; poor out-
come: M = 42.80, CI = [36.70, 48.90]; t(16.91) = 0.314, 
p = 0.76), sex (good outcome: n = 10 (3 females); poor 
outcome: n = 15 (3 females), t(17.31) = − 0.536, p = 0.60), 
log scan time post-ictus (good outcome: M = 2.17, 
CI = [1.85, 2.50]; poor outcome: M = 2.83, CI = [2.20, 
3.45]; t(22.06) = − 1.367, p = 0.19), GCS at time of imag-
ing (good outcome: M = 4.89, CI = [4.38, 6.22]; poor 
outcome: M = 6.07, CI = [5.16, 6.71]; t(17.05) = − 0.714, 
p = 0.48), and proportion of patients sedated (good out-
come: n = 4; poor outcome: n = 5; t(18.65) = 0.323, 
p = 0.75). Notably, no clinical variables were significant 
predictors of outcome when evaluated using the machine-
learning procedure detailed above and functional outcome 
prediction using these variables was poor (see Supple-
mentary Fig. 2).

Predicting patient outcome using resting‑state 
networks

Prediction performance and confidence

The classifier predicted outcome well above chance (Bal-
anced Accuracy: Mean = 0.793, CI = [0.700, 0.886], 
Z = 2.843, p = 0.002). When it came to correct individu-
alized prediction of outcome, the classifier was confident 
(Mean = 96.89%, SD = 0.080, Range = [63.50–100%], 
all p < 0.01). However, when the classifier was incor-
rect, it also was confident (Mean = 91.34%, SD = 0.116, 
Range = [71–100%], all p < 0.001). Altogether, 8/10 patients 
with good outcome and 12/15 patients with poor outcome 
were confidently and correctly predicted. See Fig. 1a for 
individualized accuracy and confidence scores and Fig. 1b 
for group accuracy.

Influential resting‑state network predictors

Predicting functional outcome was largely determined by the 
three visual networks (medial: Z = 3.11, p = 0.002; occipi-
tal pole: Z = 2.44, p = 0.015; lateral: Z = 2.85, p = 0.004; see 
Fig. 2a for results from all resting-state networks). Each 
of the visual networks had centroids that had significantly 
larger mean spatial correlations in the good outcome group 
than the poor outcome group (see Fig. 2b). Notably, the 
importance of visual networks in predicting outcome was 
specific to the neural information obtained as follow-up 
tests showed no evidence that eye-opening scores on the 
GCS (GCS-E) predict spatial correlation values of visual 
networks (see Supplementary Fig. 3 for details). This sug-
gests that patient eye-opening scores at the time of the scan 
were unrelated to each visual network’s spatial correlation. 
In addition to visual networks, the left frontoparietal network 
was significant (Z = 2.179, p = 0.029), whereas the right fron-
toparietal trended toward significance (Z = 1.880, p = 0.060) 
and, like the visual networks, had larger spatial correlations 
in the good outcome group compared to the poor outcome 
group. The other networks failed to reach significance (all 
p > 0.23). The three patients misclassified as having good 
outcome had preserved visual and frontoparietal networks, 
and the two patients who were misclassified as having poor 
outcome showed the opposing trend (see Fig. 3).

Discussion

In this study, rs-fMRI was used to assess the functional 
integrity of the brain in 25 unresponsive patients with severe 
neurologic injuries admitted to the ICU. A machine-learning 
approach was employed to predict whether patients would 
have a good or poor neurologic recovery and to assess the 
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confidence in that prediction. The classifier correctly and 
confidently predicted 8/10 patients who had good outcome 
and 12/15 patients who had poor outcome, well above pre-
dictions derived from standard clinical variables. The results 
of this study suggest that rs-fMRI may complement current 
clinical prognostic tools by providing reliable and individu-
alized assessments of neurologic outcomes.

These findings add to a growing and important body 
of literature that demonstrates the prognostic utility of rs-
fMRI for patients with acute severe brain injuries [5, 8, 10]. 
While limited in size, this study shows a sensitivity of 80% 
for predicting good neurological recovery, which is higher 
than standard clinical tools that are currently used in prac-
tice [20]. These results complement a recent study which 
showed that combined rs-fMRI and EEG models predicted 
consciousness levels at ICU discharge with high sensitivity 
(82%) [21]. The results of this study extend these findings by 
demonstrating that these measures can be used to predict the 
best functional outcome a patient achieves within 6 months 
following their injury. The high sensitivity of these measures 

may be in part because rs-fMRI captures the brain’s intrin-
sic functional connections in a manner that can be objec-
tively quantified, reflecting wide-scale integrity of neuronal 
function. Hence, if resting-state networks are preserved for 
a particular patient, the patient may have the capacity to 
reintegrate wide-scale neuronal function that supports con-
sciousness and good neurological outcome.

The three visual networks examined in this study were 
found to be significant predictors of neurologic recovery. 
Importantly, the predictive value derived from these net-
works was independent of eye-opening at the time of the 
scan (see Supplementary Fig. 3). Previous research has 
found preserved functional connections both within and 
between the occipital lobe and the rest of the brain in acutely 
unresponsive patients [8], and supported by structural imag-
ing findings that demonstrate changes in forebrain–occipital 
connectivity in severe TBI patients who regained conscious-
ness [22]. The potential clinical utility for visual networks 
also draws support from patients with chronic disorders of 
consciousness, where visual-auditory networks were able to 

Fig. 1  a Dot plot that shows the 
Nearest Centroid’s accuracy and 
confidence in predicting each 
patient’s functional outcome 
from ten canonical resting-
state networks [10]. Each dot 
represents a single patient’s 
confidence. The shading of 
the dot plots indicates whether 
prediction was correct or not, 
where the green area represents 
patients who were confidently 
and correctly predicted by the 
classifier, the red area is the 
opposite, and the blue area 
is where the prediction of 
patient outcome could not be 
distinguished from guessing. b 
Confusion matrix of a patient’s 
true outcome (y-axis) and the 
Nearest Centroid’s prediction 
of that outcome. The numbers 
indicate the number of patients 
who were classified in each 
quadrant. Green shaded regions 
correspond to accurate predic-
tions, whereas red indicates 
incorrect predictions

b

Incorrect Prediction

Uncertain Prediction

Correct Prediction

a
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differentiate between minimally conscious and unresponsive 
patients [23]. However, an important distinction is that in 
the present study, auditory networks were not significant 
predictors of recovery. Visual networks are also supportive 
of higher order cognitive properties, such as space, orthogra-
phy, covert reading, and internally directed thought [15, 24, 

25]. The present study also revealed that the left frontopa-
rietal network had prognostic importance, which supports 
prior findings demonstrating that the preservation of this net-
work is a significant predictor of recovery after anoxic and 
traumatic brain injury [26]. Additionally, the frontoparietal 
network has been used as a biomarker for preserved cortical 

Fig. 2  a Bar plot showing the extent to which resting-state networks 
were predictive of functional outcome. Z-scores indicate the degree 
to which the difference between the good and poor outcome centroid 
was highly positive (or highly negative) compared to chance, where 
chance is defined by the centroids computed during permutation 
testing. Larger Z-scores indicate a large centroid difference between 

good and poor outcome, whereas a large negative difference means 
the opposite. Z-scores above the dashed blue line are significant 
(p < 0.05). b A 3-D scatterplot showing the two different outcomes 
(good outcome in blue and poor outcome in red) plotted as a function 
of the three networks (medial, lateral, and occipital pole visual) that 
were most informative in distinguishing between outcomes

Fig. 3  Pointplot showing the 
mean spatial correlations (with 
95% confidence intervals) for 
each network. The top plot 
shows the spatial correlation 
values for patients with poor 
outcome and the bottom plot 
for good outcome. The red and 
blue lines show mean spatial 
correlation when patients were 
correctly predicted by the clas-
sifier, whereas the remaining 
colors were those who were 
mispredicted (with warmer 
colors representing mispre-
dicted patients who had a poor 
outcome and cooler colors were 
mispredicted patients with good 
outcome)

S
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tia
l C
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la
tio

n

Poor Outcome

Good Outcome



 Journal of Neurology

1 3

integrity in chronic disorders of consciousness, likely to its 
role in goal-directed behavior, working memory, and cogni-
tive control [15, 24, 27]. Taken together, the preservation 
of these networks suggests that the neural infrastructure for 
simple and complex perception and cognition may support 
neurologic recovery.

In contrast to previous rs-fMRI studies with this patient 
population, the DMN was not a significant predictor of out-
come [5–7, 9]. Notably, there was high positive correlation 
between the default mode network and the medial visual and 
frontoparietal networks (see Supplementary Fig. 4), which 
may have lessened the predictive power of the DMN. It may 
be the case that more detailed information about the DMN 
(e.g., voxel-wise functional connectivity) is needed to draw 
out information relevant to predicting outcome. Nonetheless, 
our results suggest that it may be more useful to examine the 
predictive value of connectivity across multiple resting-state 
networks. Future research should incorporate these resting-
state networks with additional networks (e.g., the salience 
network [23]), compute connections within networks and 
structures  [9, 28]  known to be associated with supporting  
consciousness (e.g., the ascending arousal network [22]) to 
better understand the role these different networks play in 
supporting neurologic recovery..

This study has a heterogeneous patient population with 
variable time of scanning, which should be considered as 
novel and important strengths. The results suggest that the 
timing of ICU stay should not preclude the need for an rs-
fMRI scan and that the prognostic utility of this method 
extends beyond the acute phase of severe brain injury. While 
only 12% of the study population was chronically criti-
cally ill, the results predicted the correct outcome for these 
patients, suggesting that future work should include and fur-
ther explore using rs-fMRI for patients with extended ICU 
stays. Moreover, the varied sample in this study reflects the 
practical reality of heterogeneous brain disorders in the ICU. 
Given that previous rs-fMRI studies have almost exclusively 
focused on anoxic and traumatic brain injured patients [5, 
8–10, 29], this study mirrors a more realistic sample of aeti-
ologies that are seen in the ICU. Future work should inves-
tigate the utility of rs-fMRI for other severe brain injuries, 
such as stroke, hemorrhage, status epilepticus, encephalitis, 
and metabolic encephalopathies [30].

Importantly, these results demonstrate that rs-fMRI can 
be obtained with a 1.5 T scanner and are clinically useful 
at this field strength, which increases the generalizability 
of these findings. Clinical protocols could include rs-fMRI 
sequences as they are easy to obtain relatively short and 
do not require any effort on the part of the patient. Unlike 
task-based paradigms [3, 4], the results do not depend on 
command driven brain activity which can be limited by 

fluctuating levels of consciousness and thus prone to false 
negatives [31]. While most MRI scanners can perform func-
tional sequences, they rarely come as ‘standard’ and techni-
cal expertise is required to analyze and interpret rs-fMRI 
data. Ultimately, standardized acquisition and analysis will 
be required to implement these methods across hospitals.

Identifying markers for good functional recovery in 
acutely unresponsive patients is of paramount importance, 
because discussions surrounding the continuation or removal 
of life-sustaining therapies occur in a short time window 
following the patient becoming unresponsive. Currently, the 
functional outcome for many ICU patients remains uncer-
tain, and both clinicians and families struggle with whether 
to maintain or discontinue support. The results of surveys of 
intensivists, neurosurgeons, and neurologists highlight this 
issue, finding significant uncertainty concerning prognosis 
in severe traumatic brain injury, what constitutes good func-
tional recovery, as well as considerable variability in how 
and whether recommendations to withdraw life-sustaining 
therapies are made [14, 32]. Our results indicate that quanti-
fying and classifying the presence of rs-fMRI networks can 
provide useful information to aid in prognostication, which 
may affect the outcome of these discussions.

Limitations

This study was completed at a single center, and the number 
of patients included is relatively small, which decreases the 
generalizability and limits external validity. Furthermore, 
machine learning can be misleading in smaller samples due 
to the potential for overtraining [12, 13, 33]. However, the 
accuracy is in line with similar studies [7–9], and several 
precautionary steps were taken (e.g., permutation testing, 
validation against clinical information) to reveal potential 
biases that could have inflated accuracy. However, large 
multi-center studies are needed to elucidate the reproduc-
ibility of these results and to determine the true prognostic 
utility of rs-fMRI. The Coma Recovery Scale-Revised was 
not used to assess for level of consciousness in this patient 
cohort. Indeed, the use of the CRS-R score would enable 
stronger conclusions to be drawn from the prognostic value 
of neural data. For example, while the preservation of vis-
ual networks could not be explained by GCS-E scores, they 
may be explained by CRS-R measures of visual tracking. 
While the CRS-R is recommended for use with patients with 
chronic consciousness disorders, it is time-consuming and 
often difficult to administer in the ICU [34, 35]. Therefore, 
the GCS score was used to document the patient’s level of 
consciousness at the time of study enrollment and imag-
ing, but future work should consider the added value of 
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using CRS-R for bedside measures of conscious awareness. 
Finally, while our approach obtained high sensitivity and 
specificity driven by visual and frontoparietal networks, pre-
diction was not perfect. For example, not all patients with 
preserved visual and frontoparietal networks will recover 
and not all patients without them will have a poor outcome. 
Misprediction is meaningful in that it exposes limitations 
in the exclusive use of rs-fMRI for prognostication. Future 
work can incorporate other prognostically relevant tools, 
including blood biomarkers, clinical information, and task-
based neuroimaging [36].

Conclusion

In conclusion, machine learning and rs-fMRI can be utilized 
to provide accurate individualized assessments for neuro-
logical outcome from a diverse population of critically brain 
injured patients. Our results suggest that the preservation 
of functional networks may serve as a biomarker for good 
functional recovery after sustaining a severe brain injury. 
Although promising, more work is required to elucidate the 
utility of rs-fMRI for providing clinicians with timely prog-
nostic information about the prospect of recovery which may 
aid with decisions regarding the continuation of care and the 
withdrawal of life-sustaining measures.
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